国内9l视频自拍|中文午夜人妻无码看片|日韩又大又长又粗视频|中文字幕aⅴ人妻一区二区|另类专区亚洲97在线视频|欧美不卡高清一区二区三区|亚洲精品无码AV中文永久在线|国产精品亚洲一区二区三区日韩

Wuxi Gotele Metal Products Co., Ltd : CN EN
首頁 >>新聞動態(tài) >>機械設(shè)備新聞

Surgery Integrating Robots

Surgery Integrating Robots  

Nowadays, the autonomous industry is becoming more and more prominent. Self- driven cars are in the works of being developed while robotics are emerging within factories. What could be next? Automated surgery. Researchers at the University of Utah recently developed a computer-driven automated drill.

Similar to the automotive parts used in machinery, this automated drill has the potential of playing a pivotal role in the surgical department. This drill can produce fast, clean and most importantly safe cuts. By doing so, this will be able to reduce the duration a wound is open and the time a patient is under anesthesia. It is probable for a complex procedure’s time duration to be reduced by more than half the original duration. For example, a 2 hour cranial surgery that originally takes 2 hours to complete can be preformed 50x faster with an automated drill, bringing the time to only 2 ? minutes. This helps reduce the risk of infection, human error, and surgical cost.



Many complex surgeries require surgeons to use hand drills for intricate openings and incisions, adding time to each procedure. Everything has to be done with precision and it takes time and patience. There was a need to develop a device that could alleviate the burden while making the process much more efficient. The technology and knowledge is readily available and has previously been applied to many other sectors, but never within the medial field. A.K. Balaji, associate professor in mechanical engineering was interested in producing a low-cost drill that will be able to do a lot of the extraneous work to reduce surgeon fatigue.

The team then developed a drill entirely from scratch that was able to meet the needs of a neurosurgical unit. Also, they were able to develop software that has the ability to provide a safe cutting path. First, patients undergo a CT scan to help the doctor gather information regarding sensitive part of the brain such as nerves, arteries, and veins that need to be avoided. With that information, a cutting path is then developed for the drill to perform. The developed software is able to provide the surgeon with an optimum path. In addition, the surgeon has the option of programming safety barriers along the cutting path within 1 mm of the sensitive parts. The drill has the ability of removing the bone more accurately and faster than human hands. It doesn’t stop there; the drill has an emergency switch that monitors the facial nerves for any sign of irritation.

The team is researching ways and opportunities to commercialize this drill and to express that this drill can be used for other surgical procedures. 

首頁電話產(chǎn)品導(dǎo)航
CN EN
象州县| 凯里市| 贵州省| 民乐县| 富阳市| 河北区| 潍坊市| 焦作市| 彝良县| 洪湖市| 苍溪县| 新田县| 兰考县| 余干县| 翁牛特旗| 博爱县| 武宁县| 道真| 河西区| 石林| 滨海县| 柏乡县| 铜梁县| 策勒县| 泌阳县| 宁陵县| 尚义县| 玉屏| 沂水县| 靖安县| 宾阳县| 祁阳县| 舟山市| 云浮市| 银川市| 武功县| 融水| 天祝| 辽中县| 广州市| 库伦旗|